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Abstract—A mayor challenge in human-robot interaction and
collaboration is the synthesis of non-verbal behaviour for the ex-
pression of social signals. Appropriate perception and expression
of dominance (verticality) in non-verbal behaviour is essential
for social interaction. In this paper, we present our work on
algorithmic modulation of robot bodily movement to express
varying degrees of dominance. We developed a parameter-based
model for head tilt and body expansiveness. This model was
applied to a variety of behaviours. These behaviours were
evaluated by human observers in two different studies with
respectively static pictures of key postures (N=772) and real-
time gestures (N=31). Overall, specific behaviours proved to
communicate different levels of dominance. Further, modulation
of body expansiveness and head tilt robustly influenced perceived
dominance independent of specific behaviours and observer
viewing height and angle. The modulation did not influence
perceived valence, but it did influence perceived arousal. Our
study shows that dominance can be reliably expressed by both
selection of specific behaviours and modulation of behaviours.

Index Terms—Human-robot Interaction, Social Robotics, Body
Language, Dominance, Power, Non-verbal Behaviour, Expression,
Social Signal Processing, Perception, Synthesis, Modulation

I. INTRODUCTION

Robots and virtual agents increasingly fulfil functions that
require social interaction and communication with people
who are not trained to interact with a robot or avatar. In
inter-human communication, the interaction consists of both
verbal and nonverbal behaviour. Nonverbal behaviour conveys
information about the relationship and about likes and dislikes
[1]. Based on observable behaviours (e.g., facial expression,
proximity) people form impressions of the others and develop
expectations [2]. For artificial agents (both virtual and robotic),
to engage in meaningful interactions with humans, the impor-
tance of social intelligence is widely acknowledged [3], [4].

Research on emotional expressions for virtual agents is
abundant (e.g., [5]–[7]). A common approach for the design
of emotional expressions is to develop specific behaviours
based on human emotion expression in a particular modality
(e.g., posture, gesture, gaze, facial expressions) [3]. Facial
expressions are considered important cues for emotions [8],
but variations in appearance and functionality of robots as well
as line of sight of the user poses limitations on the usefulness
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of this modality. Emotional expressions are possible with body
posture as well; Cohen [9] reported high recognition rates for
the emotional expressions of a “facial robot” (iCAT) and a
“bodily robot” (NAO). Further, expressing affect while the
robot is busy with its task (sometimes referred to as mood
expression [10]) can be useful in interaction scenarios where
the robot is observed by the user while performing a task.
Therefore, alternative models for affect expression are needed.

Alternative models for different types of robots have been
investigated. For example, Lin [11] applied transformations to
walking motions of a virtual avatar and showed that discrete
emotions can be expressed by manipulating motion stiffness,
pace, and expansiveness. Beck [12] attempted to create an
‘affect space’ able to express emotions on the two dimensional
circumplex model of affect [13] by blending key poses of
discrete emotions. Xu [14] defined behaviour-specific design
patterns of key poses and interpolation parameters targeting
specific joints, which showed able to express valence and
arousal [15].

We focus on three challenges in affect expression. First,
most models and methods require a considerable amount of
work in the form of key poses or interpolation patterns for
each behaviour before being usable. Second, it is important to
assess perceived affect by the users on the affective dimension
that is intended to be manipulated, in other words, we need
a validated set of “stimuli”. Third, most models of affect
expression focus on valence and arousal, or, discrete emotions.

In this paper, we present our work on algorithmic modu-
lation of robot bodily movement to express varying degrees
of dominance. We developed a parameter-based model for
head tilt and body expansiveness. This model was applied to a
variety of behaviours and user view angles. These behaviours
were evaluated by human observers in two different studies
with respectively static pictures of key postures (N=772) an
real-time gestures (N=31).

II. DOMINANCE

Humans (unconsciously) use social signals to inform others
about their affective stance or attitude; based on observations
we evaluate someone as, among other things, warm or cold,
friendly or hostile, and dominant or submissive (e.g., [16],
[17]). Body language serves various communicative functions,
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amongst which affect displays [18]. It is commonly accepted
that power or status, i.e., dominance, is an important factor
in interpersonal relations and communications. Dominance is
defined as “power and influence over others” [19], but research
fields adopt specific notions.

Dominance is a factor in the interpersonal circumplex
—or Leary’s Rose— a two dimensional model for interac-
tion stance defined by: dominance–submissiveness and af-
filiation–hostility [20], [21]. Dominance, in this view, is an
interpersonal factor. Further, the complementary mechanism
enables strategic use of dominance display as a tool to form
interactions by, for example, teachers [22] and police officers
[23]. In social signal processing the dominance dimension is
referred to as verticality [24].

Dominance is also a dimension of affect [1], [25]. Suggested
is that affect (including discrete emotions, moods, and atti-
tudes) can be placed in a multidimensional pleasure, arousal
and dominance (PAD) model [26]. Emotions are directed
responses to internal and external events [27], and can be
either self-directed or social. Thus, a dominance relation can
exist between a person and the environment or a stimulus as
well. Dominance reflects the amount of influence, power and
overwhelmingness of a stimulus, be that another human or a
magnificent forest.

Both notions of dominance, dominance-as-emotion-
dimension and verticality-as-social-stance, relate to similar
concepts such as power, control and influence. They are both
relational. The first is defined as an affective dimension, and
thus has meaning in the context of affect communication.
The second is defined as a interpersonal dimension and has
meaning in the context of relations. However, both share
similar behavioural cues for expression. Therefore, for the
purpose of expressing dominance/verticality through the body
language of a robot, we propose to consider these dimensions
to be equal.

A. Dominance Expression in Humans

Body shape, or posture, has been associated with dominance
display. A dominant posture was stereotyped as forward [28],
open [28]–[30], expansive [30], upright [28], and oriented
towards the other [28]. Various studies reported a positive in-
fluence of body expansiveness and/or openness on dominance
expression (e.g., [30], [30], [31]). Carney [30] defined open-
ness as “keeping limbs open or closed”, and expansiveness
as “taking up more space or less space”, but other authors
provided less clear definitions of the terms or used them
intertwined. In the remainder of this paper expansiveness is
used to indicate both similar features.

However, the relation between posture and dominance is
arguably moderated by other factors such as gender or culture
[32], and supposedly previous work was inconclusive, based
on limited data, or highly context dependent [29]. Moreover,
most studies used pre-recorded exemplary images and com-
pared between distinctive postures. Meaning that the results
are only valid for the specific posture under evaluation.

Gestures, co-verbal motions of arms and/or head, are also an
important cue for dominance expression. Though, frequency
and types are discussed rather than performance. Exception is
Kipp [33] who found that an open hand shape is associated
with submissiveness while a pointing hand shape is associated
with dominance. However, this may result from the sign
function of both gestures (pointing at someone vs holding your
hands to receive something), and as such does not have to do
with modulation of openness.

Pointing was repeatedly associated with dominance expres-
sion [34]–[36]. Pointing is believed a signal of aggression,
anger, or arrogance —emotions with a high dominance value
in the PAD model [35]. Other types of gestures were associated
with dominance as well for there aggressive (e.g., [35]) or at-
tention gaining (e.g., [37]) feature. Head position has received
specific attention, multiple studies unanimously concluded that
upward head tilt is associated with dominance [28], [38], [39].

To summarise, key poses, head tilt, and body expansive-
ness are widely acknowledged bodily cues for expressions
of dominance/submissiveness. However, concrete models for
dominance expression are unavailable.

B. Dominance Expression in Conversational Agents

There is growing interest in synthesis of expressive be-
haviour for virtual agents and robots. Often however, studies
are application specific and evaluate pre-designed behaviours,
often mirroring human behaviour, rather than parameter-based
models (e.g., [5], [40], [41]).

Nonetheless, models for dominance expression were subject
of research before. Studies may focus on behaviour selection
(e.g., [42]), but this line of work gives no insight on the
features of the behaviours that convey the signal. It may
indicate which behaviours are appropriate, but not how these
behaviours should be performed. Study on the ‘manner’ of
performance was done by, for example, Lance [43]. Report-
edly, gaze behaviours expressing dominance are performed
with head tilted up and a higher body compared to submission.
This study, like others, used specific (gaze) behaviours, the
effect for other behaviours remains unknown. Ravenet [44]
combined behaviour (type) selection and gesture performance
parameters (i.e., power, amplitude). They obtained, from co-
design, parameters for dominance display similar to studies in
human behaviour which served as input to model avatar be-
haviour. However, validation of this model was not presented.
A recent study did perform an exhaustive analysis of valence
and arousal perception of gestures and performance parameters
and found interesting interaction effects between gestures and
performance [45].

Studies that evaluate parameter-based models to control
dominance expression often modify multiple parameters in
parallel (e.g., [46], [47]). This approach makes it impossible
to derive the effect of unique parameters, and thereby hard to
reuse. Evaluation of unique parameters is laborious and results
seem context dependent. For example, while Kim [48] reported
a positive effect on dominance expression for direction and



speed, Saerbeck [49] reported a positive effect for motion
direction and a negative effect for motion speed.

So far, dominance was found positively correlated with
forward sagittal motion direction [48], [49], forward gaze
direction [40], head position tilted upward [40], [43], and
gesture direction [48], [49]. Results for gesture speed were
inconclusive [48], [49].

Because it is currently unknown how dominance perception
can be manipulated using specific behavioural parameters, in
this work we focus on a detailed study to identify the effect
of body expansiveness (head tilt as a part of expansiveness)
on perceived dominance. We try to isolate the effect of
expansiveness but test this on a range of behaviours and user
viewing angles to ensure that the effects we find are generic.
We also identify the effect of the behaviours themselves on
perceived dominance, as a possible confound but also as a
means to express dominance.

III. ROBOT DOMINANCE MODEL

Based on behavioural cues for dominance expression in
human-human interaction (see Section II), we developed a
parametric model of body expansiveness for dominance ex-
pression in a humanoid robot. We selected five parameters
manipulating body expansiveness: vertical head angle, hori-
zontal shoulder angle, horizontal and sagittal hip angle, and
vertical leg stretch (Fig. 1).

The modulations are applied to existing (neutral) NAO
behaviours. We define a factor f as the dominance level which
is positively correlated with the dominance expression, and
ranging [−1.00, 1.00], where 0 is the neutral stance, and -1
and 1 represent the most submissive and the most dominant
stance respectively. Based on the f value the movement
trajectory of affected joints is adapted. For head and arm
movement a linear modulation between the neutral and limit
position (see Table I) is executed on joints HeadPitch,
LShoulderRoll, and RSholderRoll. A time adjustment
is applied to maintain a consistent speed. The legs are adapted

(a) dominance (b) submissiveness

Fig. 1: example manipulations for the most dominant and most
submissive stance as implemented on the NAO robot in a
standing position. Maximum dominance: head tilt 18°, arm
spread 40°, leg spread 9°, and leg stretch 30cm (Fig. 1a).
Maximum submissiveness: head tilt -10°, arms enclosing 10°,
leg angle 0°, and leg stretch 26.5cm (Fig. 1b).

accordingly following one of three standing patterns (i.e.,
neutral, dominant, submissive).

Although the following implementation is NAO specific, the
principles explained therein can be used on any humanoid with
a similar structure.

A. Implementation

We implemented the parameter-based model for dominance
expression in an existing framework for NAO behaviour man-
agement. To execute a behaviour on the NAO robot, it expects
two arrays with the path and execution time for the behaviour.
The path information for all original (neutral) behaviours is
stored in an XML file. To manipulate dominance expression
we apply joint modulations relative to the neutral path and
based on the dominance level. The affected joints and their
adjustment patterns are given in Table I.

a) Motion Trajectory: For a specific behaviour, multiple
joints are moving in parallel. The path of joint i is described
as: {

xi = (xi0, xi1, · · · , xini
)

ti = (ti0, ti1, · · · , tini
)

}
(1)

where xij is the trajectory value of joint i at tij time, and
n is the maximum value of n for all m joints. The path for
the entire behaviour can be described as two m× n matrices:
Xm×n and Tm×n.

b) Parameter Insertion: For each k modulated joints, an
array will be inserted in the path matrix. If we define the
inserted arrays as Nk×n and Lk×n, the path matrix will be:

X ′(m+k)×n =

(
Xm×n
Yk×n

)
, T ′(m+k)×n =

(
Tm×n
Lk×n

)
(2)

Non modulated joint movement remains the point-to-point
path specified in the XML file.

c) Head and Arm Movement: Linear modulation is
applied to the path trajectories of selected joints (i.e.,
HeadPitch, LShoulderRoll, and RShoulderRoll)
as follows:

J(f) =

{
xNeutral + (xMax − xNeutral)× f , f > 0
xNeutral − (xNeutral − xMin)× f , f < 0

(3)

TABLE I: modulated joints, and joint angle values for most
dominant, neutral and most submissive stance. (Left joint
values are given, right joint values were reflected.)

Parameter Joint Dom Neutral Sub

Head tilt HeadPitch 0.51 0.00 0.67

Shoulder angle LShoulderRoll 1.33 0.00 -0.31

Leg angle LHipYawPitch -0.17 0.00 0.00
LHipRoll 0.09 0.00 0.00

Leg stretch LHipPitch 0.13 0.00 -0.44
LKneePitch -0.08 0.00 0.69

Stability LAnklePitch 0.08 0.00 -0.35
correction LAnkleRoll -0.13 0.00 0.00



xMax and xMin are the reference values for the limit positions
(i.e., most dominant and submissive), corresponding with the
joint angles listed in Table I. The dominance factor f is the
relative proportion of modulation applied between the neutral
and limit position.

We define the three modulated joints as x0 ∼ x2, from (3),
their new trajectory is derived as:

x′i = (J(xi0, f), J(xi0, f), · · · , J(xin, f)) (4)

Let

X1 = (x′0, x
′
1, x
′
2)

T (5)

X1 is the first three rows of the trajectory matrix.
d) Time Adjustment: A time-stamp adjustment is applied

to maintain the velocity and acceleration over shortened or
prolonged trajectories. For a positive factor f the time is in-
creased. To increase time by the same portion as the trajectory
the percentage increase for each time interval should be the
same as the percentage increase of the trajectory. From (3) we
can get:

x′ij = xij + (xmax − xij)× f

x′i(j−1) = xi(j−1) +
(
xmax − xi(j−1)

)
× f

(6)

Then we get the angle displacement:

x′ij − x′i(j−1) = (xij − xi(j−1))× (1− f) (7)

The change in proportion
x′ij−x

′
i(j−1)

xij−xi(j−1)
will be (1− f). There-

fore, the new j time for joint i is calculated by:

t′ij = t′i(j−1) +
(
tij − ti(j−i)

)
× (1.00− f) (8)

e) Leg Movement: We created three patterns of standing
poses that vary in expansiveness and extension instead of
continuous path trajectories due to balance constraints. The
patterns were created manually, and relate to the dominance
factor as follows:

SPattern(f) =


Patternsub ,−1.00 ≤ f < −0.33

Patternneu ,−0.33 ≤ f ≤ 0.33

Patterndom , 0.33 < f ≤ 1.00

(9)

Upon change of dominant factor f above the specified thresh-
olds, a transition between standing patterns takes place in
parallel with behaviour execution. Assume the 3rd to 12th rows
in X ′ and T ′ are the path for the legs joints, then these values
will be replaced by those of the new leg pattern. These new
values are defined as two 10 × n matrices X2 and T2. The
final path for this behaviour is:

X ′′ =

X1

X2

Xr

 , T ′′ =

T1T2
Tr

 (10)

Xr and Tr are paths of unchanged joints.

IV. PILOT: MODEL VALIDATION

A. Method

We conducted a 2 (expansiveness) x 2 (horizontal angle) x
2 (vertical angle) between-subject, factorial posture perception
study to evaluate the effect of body expansiveness on perceived
dominance expression and explore covariates view angle.

a) Stimuli: The expansiveness modulation described in
Section III was applied to 11 distinctive postures performed by
a NAO robot. Pictures were taken from a 0° and 30° horizontal
angle and with the robot standing on ground level and a 110cm
height table.

b) Measurement: Perceived dominance of the stimulus
was measured on a 5-point Likert scale (dominant to submis-
sive).

c) Procedure: An on-line survey was set-up at Amazon
Mechanical Turk. A Human Intelligence Task (HIT) consisted
of 11 subsequent pictures presented in random order and
depicting postures within one condition. A HIT could be
started anytime. Each participant could complete the HIT only
once. First, demographic data was collected and the task was
explained. Then, two trail questions were presented, showing
iconic human expressions of dominance and submissiveness.
Finally, participants rated the robot images one by one.

d) Participants: A total of 835 Mechanical Turk work-
ers completed the HIT and were compensated monetarily.
Of these, 45 participants failed the trial question and were
excluded from further analysis. Another 18 participants were
excluded due to low credibility based on a reported age of
1 or 113. The remaining 772 participants were self-identified
mostly Americans (n=558) or Indian (n=110), aged between
20 and 83 (Mean=35.42, Std=10.69), and 60% male. Partici-
pants where fairly evenly distributed among conditions with a
minimum of 89 and maximum of 109 participants per group.

B. Results

We performed a MANOVA with repeated measures, with
within-subject factors the 11 postures, and between-subject
factors horizontal view angle, vertical view angle, and body
expansiveness.

The tests of between-subject effects showed a significant
main effect for body expansiveness on perceived dominance,
F = 262.52, p < 0.001. This effect was consistent be-
tween postures, except for posture 1 (Fig. 2a). Both hor-
izontal and vertical view angle did not significantly affect
perceived dominance (respectively F = 1.56, p = 0.212,
F = 0.38, p = 0.535). But, there was a significant, positive,
interaction effect for vertical view angle and expansiveness,
F = 9.79, p = 0.002 (Fig. 2b). In other words, only body
expansiveness influenced perceived dominance and did so in
the expected direction, this effect was increased when the
vertical view angle was decreased (i.e., robot on a table).

The within-subject tests showed a significant main effect
of posture on perceived dominance, F = 182.52, p < 0.001.
Further, there were small though significant interaction effects
between posture and each of the factors horizontal angle,



1 2 3 4 5 6 7 8 9 10 110

2

4

1

2

3

4

5

posture

pe
rc

ei
ve

d
do

m
in

an
ce dominant submissive

(a) Mean perceived dominance for both submissive and dominant
stimuli, given per posture.

dominant (spread) submissive (enclosed)
0

2

4

1

2

3

4

5

body expansiveness

pe
rc

ei
ve

d
do

m
in

an
ce ground table

(b) Mean perceived dominance for both ground and table placed
stimuli, given per body expansiveness condition.

Fig. 2: mean perceived level of dominance expressed by the robot (range 0–5).

vertical angle, and expansiveness. Most prominently posture
and expansiveness, F = 45.23, p < 0.001.

C. Discussion

First, the effect of manipulation of body expansiveness on
perceived dominance shows that expansiveness is an important
factor for dominance expression. Although there was an inter-
action effect with view height this did not hinder perception
as intended. Indicating that body expansiveness manipulation
can be used to influence perceived dominance, and that this is
robust against variations in view angle.

Further, different postures have different associated levels
of dominance (Fig. 2a). This is of no surprise given that
some postures by nature are more expansive than others.
Nonetheless, for all but one postures the body expansiveness
manipulation influenced dominance perception in the desired
direction. This indicates that body expansiveness modulation
can be used to influence perceived dominance independent of
specific behaviours.

To summarise, we have identified two methods controlling
dominance expression by a robot: posture selection and body
expansiveness manipulation. The latter by modulation of the
parameters head tilt, arm angle, leg angle, and leg stretch.

V. STUDY 2: SYNTHESISED GESTURES

A. Method

To evaluate the effect of expansiveness modulation applied
to motions on observers’ perception of the robot’s affect
expression, we set up an experiment with between-subject vari-
able body expansiveness, and within-subject variable gesture.

a) Stimuli: The proposed modulation can be applied to
any robot behaviour. For the purpose of this experiment we
selected 10 distinctive behaviours and applied the maximum
dominant and submissive modulations. The behaviours were
created in Choreograph and designed to express a ‘neutral’
stance. The resulting submissive, neutral, or dominant versions
were shown on a NAO placed in front on a table.

b) Measurement: Perceived dominance was measured on
a 9-point Likert scale. We used the Self Assessment Manikin
(SAM) [25] because it is a widely acknowledged, validated,
instrument measuring affective responses to a wide variety of

stimuli. We include all three items (i.e., dominance, valence,
arousal) to control for correlations with these factors.

c) Procedure: Participants participated individually and
were seated 1.5 meters from the robot. Each participant was
assigned to one condition (i.e., neutral, dominant, submissive),
and presented the 10 gestures, modulated accordingly, one by
one in randomised order. After each gesture the participant
completed the SAM questionnaire. Gestures could be viewed
repeatedly upon request. A researcher was present in the room
to control the robot.

d) Participants: A total of 31 participants were recruited
at the University premises, all students or staff. Partici-
pants were aged 23–62 (Mean=32.22, std=9.88), mostly male
(n=17), and predominantly of Chinese (n=10) or Dutch (n=12)
nationality. Eight participants did not provide their age, of
these six withheld their nationality, and four their gender as
well. Participants were equally balanced between conditions.

B. Results

We performed a MANOVA (within-subject factors the 10
gestures and between-subject factor expansiveness) and com-
pared outcomes for perceived dominance, valence and arousal.

Using Pillai’s trace, the multivariate test showed a moderate
tendency of body expansiveness to affect overall perception,
V = 0.35, F (6, 54) = 1.90, p = 0.098. No interaction
effect between gesture and body expansiveness was found.
However, separate univariate ANOVAs on the outcome vari-
ables revealed significant positive body expansiveness effects
on perceived dominance, F (2, 28) = 4.41, p = 0.022; and
arousal, F (2, 28) = 5.10, p = 0.013. In other words, par-
ticipants perceived the robot displaying spreading gestures
as more dominant (µ = 5.6) and aroused (µ = 5.93)
than a robot showing more enclosed gestures (dominance,
µ = 4.58; arousal, µ = 4.76), and that these differences were
independent of specific gestures.

Tests of within-subject effects revealed a small but sig-
nificant overall effect of gesture on perception, V =
0.83, F (27, 756) = 10.78, p < 0.001. Univariate tests on the
outcome variables revealed significant effects of gesture for
all three factors (dominance, F = 16.56, p < 0.001; valence,
F = 13.92, p < 0.001; arousal, F = 12.78, p < 0.001). For



none of the factors, an interaction effect between gesture and
expansiveness was found. In other words, different gestures
elicited different perceptions, but these differences were con-
sistent over body expansiveness conditions (Fig. 3).

C. Discussion

This study shows that, also in motions, body expansiveness
influences dominance perception. The effect of body expan-
siveness is independent of a specific gesture, and correlated
with arousal. This might be explained by more dominant
behaviours being more expressive, and expressiveness being
a factor for arousal display (e.g., [50]). Further, one of the
parameters, head tilt, was associated with arousal display (e.g.,
[40], [51]). Arousal was also found to correlate with valence
[15]. However, in our study, body expansiveness did not affect
perceived valence (Fig. 3c). This means that body expan-

1 2 3 4 5 6 7 8 9 100

2

4

6

8

1
2
3
4
5
6
7
8
9

gesture

pe
rc

ei
ve

d
do

m
in

an
ce dominant neutral submissive

(a) Mean perceived dominance (range 0–9)

1 2 3 4 5 6 7 8 9 100

2

4

6

8

1
2
3
4
5
6
7
8
9

gesture

pe
rc

ei
ve

d
ar

ou
sa

l dominant neutral submissive

(b) Mean perceived arousal (range 0–9)

1 2 3 4 5 6 7 8 9 100

2

4

6

8

1
2
3
4
5
6
7
8
9

gesture

pe
rc

ei
ve

d
va

le
nc

e dominant neutral submissive

(c) Mean perceived valence (range 0–9)

Fig. 3: estimated means for user perception of the robot,
numbers 1–10 indicate the individual gestures, coloured bars
depict the body expansiveness conditions.

siveness could be used to selectively manipulate dominance
display without influencing perceived valence (pleasure).

As with postures, the body expansiveness effect is consistent
over multiple gestures, however, different gestures do convey
different levels of dominance. Thus, parameter-based domi-
nance control is limited to relative differences within a be-
haviour’s affective tendency. Considerate behaviour selection
is necessary to convey a consistent dominance display over
a prolonged interaction sequence. The affective tendencies of
behaviours (i.e., postures and gestures) can be used to our
advantage. For example, adjusting the frequency of specific
gestures to control dominance [46], or selecting types of
gestures to express certain roles (e.g., [52], [53]).

We have shown the validity of body expansiveness modula-
tion for dominance expression in both postures and gestures.
We show that with a limited set of parameters we can express
various degrees of dominance. The joint angles are specific to
NAO, but the body expansiveness modulation can be applied
to any robot or embodied agent, making the model applicable
to other systems and scenario’s as well. Further, we discovered
distinctive affective patterns in individual gestures. However,
extensive evaluation of this effect in interaction is required to
support expression of certain roles in interactive scenario’s.

VI. CONCLUSION

In conclusion, we showed that dominance perception of
robot gestures and postures can be controlled by behaviour se-
lection and parameter-based body expansiveness manipulation.
We found that specific postures and gestures have a natural
tendency towards being perceived as more or less dominant.
Further, the manipulation effect was consistent for a variety of
behaviours except a sitting pose. A clear view on the robot may
increase the effect. Manipulation was based on inter-human
interaction cues for dominance display: vertical head angle,
horizontal shoulder angle, horizontal and sagittal hip angle,
and vertical leg stretch. Our results are limited by the number
of behaviours evaluated and application on a NAO robot and
should be replicated with other robot types.
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